Press "Enter" to skip to content

Adyghe Int. Sci. J. Vol. 23, No 4. P. 54-61

Adyghe Int. Sci. J. Vol. 23, No 4. P. 54-61. 

Read article                                                                                                                     Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2023-23-4-54-61
EDN: IVFCEX

MATHEMATICS

MSC 34A08, 34B05 Original Article

Analogue of Tricomi problem for one characteristically loaded hyperbolic-parabolic equation

Khubiev Kazbek Uzeirovich
Ph.D. in physics and mathematics, senior Researcher of Department of Mixed Type Equations, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 А Shortanova St., Nalchik, Russia), https://orcid.org/0000-0001-7612-8850, khubiev_math@mail.ru

Abstract. In this paper considers an analogue of the Trikomi problem for one characteristically loaded model equation of the mixed hyperbolo-parabolic type of the second order. The loaded term in the domain of the hyperbolic function is the derivative of the desired function trace on characteristics of the equation of the same order as the equation itself. Sufficient conditions on the coefficients are found for a unique solution.

Keywords: loaded equation, mixed type equation, hyperbolic-parabolic equation, Tricomi problem, boundary value problem.

Acknowledgments: the author are thankful to the anonymous reviewer for his valuable remakes.

For citation. Khubiev K. U. Analogue of Tricomi problem for one characteristically loaded hyperbolicparabolic equation. Adyghe Int. Sci. J. 2023. Vol. 23, No. 4. P. 54–61. DOI: https://doi.org/10.47928/1726-9946-2023-23-4-54-61; EDN: IVFCEX

The author has read and approved the final version of the manuscript.
Submitted 18.12.2023; approved after reviewing 20.12.2023; aeeepted for publication 21.12.2023.

© Khubiev K. U., 2023

REFERENCES

1. Nakhushev A. M. Uravneniia matematicheskoi biologii [Equations of mathematical biology]. Moscow: Vysshaia Shkola, 1995. 301 p.
2. Nakhushev A. M. Nagruzhennye uravneniya i ikh primeneniya [Loaded equations and their applications]. Moscow: Nauka, 2012. 232 p.
3. Gel’fand I. M. Nekotorye voprosy analiza i differentsial’nykh uravneniy [Some questions of analysis and differential equations]. Uspekhi Mat. Nauk. Vol. 14. № 3(87). P. 3–19.
4. Struchina G. M. Zadacha o sopryazhenii dvukh uravneniy. Inzhenerno-fizicheskiy zhurnal. 1961. Vol. 4. № 11. P. 99–104.
5. Uflyand Ya. S. K voprosu o rasprostranenii kolebaniy v sostavnykh elektricheskikh liniyakh. Inzhenerno-fizicheskiy zhurnal. 1964. Vol. 7. № 1. P. 89–92.
6. Zolina L. A. On a boundary value problem for a model equation of hyperbolo-parabolic type. U.S.S.R. Comput. Math. Math. Phys. 1966. Vol. 6, № 6. P. 63–78.
7. Bzhikhatlov Kh. G., Nakhushev A. M. A certain boundary value problem for an equation of mixed parabolic-hyperbolic type. Dokl. Akad. Nauk SSSR. 1968. Vol. 183. № 2. P. 261–264.
8. Nakhushev A. M. Zadachi so smeshcheniem dlya uravnenij v chastnyh proizvodnyh [Problems with shifts for partial differential equations]. Moscow: Nauka, 2006. 287 p.
9. Jenaliyev M. T., Ramazanov M. I. Nagruzhennye uravneniya kak vozmushcheniya differencial’nykh uravnenii [Loaded equation — how perturbed differential equationsy]. Almaty: Gylym, 2010. 334 p.
10. Nakhushev A. M. O nelokal’nyh zadachah so smeshcheniem i ih svyazi s nagruzhennymi uravneniyami [Nonlocal boundary value problems with shift and their connection with loaded equations]. Differ. Uravn. 1985. Vol. 21. № 1. P. 92–101.
11. Nakhushev A. M. O zadache Darbu dlya odnogo vyrozhdayushchegosya nagruzhennogo integrodifferencial’nogo uravneniya vtorogo poryadka [The Darboux problem for a certain degenerate second order loaded integrodifferential equation]. Differ. Uravn. 1976. Vol. 12. № 1. P. 103–108.
12. Ogorodnikov E. N. Nekotorye harakteristicheskie zadachi dlya sistem nagruzhennyh differencial’nyh uravnenij i ih svyaz’ s nelokal’nymi kraevymi zadachami [Some characteristic problems for loaded systems of differential equations and their relationship with non-local boundary value problems]. Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki. 2003. Vol. 19. № 2. P. 2–28.
13. Nakhushev A. M. Ob odnom priblizhennom metode resheniya kraevyh zadach dlya differencial’nyh uravnenij i ego prilozheniya k dinamike pochvennoj vlagi i gruntovyh vod [An approximate method for solving boundary value problems for differential equations and its application to the dynamics of ground moisture and ground water]. Differ. Uravn. 1982. Vol. 18. № 1. P. 72–81.
14. Kozhanov A. I. Solvability of some spatially nonlocal boundary value problems for second-order linear hyperbolic equations. Doklady Mathematics. 2009. Vol. 80. № 1. P. 599–601.
15. Eleev V. A. Some boundary value problems for mixed loaded equations of second and third orders. Differ. Equ. 1994. Vol. 30. № 2. P. 210–217.
16. Khubiev K. U. Analog zadachi Trikomi i zadacha so smeshcheniem dlya model’nogo nagruzhennogo uravneniya giperbolo-parabolicheskogo tipa. Dokl. Adyg.(Cherkes.) Mezhdunar. akad. nauk. 2008. Vol. 10. № 2. P. 67–71.
17. Khubiev K. U. Analogue of Tricomi problem for characteristically loaded hyperbolic-parabolic equation with variable coefficients. Ufa Math. J. 2017. Vol. 9, № 2. P. 92–101.
18. Tikhonov A. N., Vasil’eva A. B., Sveshnikov A. G. Differencial’nye uravneniya [Differential Equations]. Moscow: Nauka, 1980. 232 p.
19. Khubiev K. U. Kraevye zadachi dlya harakteristicheski nagruzhennogo uravneniya giperboloparabolicheskogo tipa [Boundary-value problems for a characteristically loaded hyperbolicparabolic equation]. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz. 2021. Vol. 195. P. 127–138
20. Khubiev K. U. Ob odnom analoge zadachi Trikomi dlya uravneniya smeshannogo giperboloparabolicheskogo tipa s proizvodnoj pri nagruzke. Dokl. Adyg.(Cherkes.) Mezhdunar. akad. nauk.
2009. Vol. 11. № 2. P. 58–60.
21. Khubiev K. U. Analog zadachi Trikomi dlya nagruzhennogo uravneniya giperboloparabolicheskogo tipa s drobnoj proizvodnoj pri nagruzke. Dokl. Adyg.(Cherkes.) Mezhdunar. akad. nauk. 2015. Vol. 17. № 3. P. 54–59.

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук