Press "Enter" to skip to content

ABK_Vol. 22, No 4. P. 39-56

Adyghe Int. Sci. J. Vol. 22, No 4. P. 39-56. ISSN 1726-9946

Read article                                                                                                         Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2022-22-4-39-56

MATHEMATICAL MODELING

MSC 05С85, 05С21, 90С25, 90С39 Original Article

Higher-ranked optimal large pipeline networks design

Mukhammed Borisovich Abazokov
junior researcher, department of Computational Methods, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), https://orcid.org/0000-0002-6847-403X, Abazokov.Mukhammed@yandex.ru
Marat Alievich Bagov
researcher, department of Computational Methods, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), https://www.scopus.com/authid/dctail.uri7autliorld—57221977895, niaratniipnia@niail.ru
Valery Cherimovich Kudaev
Ph.D., lead researcher, department of Computational Methods, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), https://www.scopus.com/authid/dctail.uri7authorld—57205145867, https://orcid.org/0000-0002-8313-4199, vchkudacv@niail.ru

Abstract. The paper presents a computer-aided optimal design of hydraulic systems. The method is based on dividing the network synthesis problem into two stages resulting in a dimensional reduction. This allows the optimal networks design of the higher rank. The proposed technique is intended for automated design of large pipeline networks for rural and interregional water supply.
Keywords: flow network, synthesis problem, division into subtasks, dimensional reduction, extremum rank, rank optimization

Acknowledgments: the author are thankful to the anonymous reviewer for his valuable remakes.

For citation. M. B. Abazokov, M. A. Bagov, V. Ch. Kudaev Higher-ranked optimal large pipeline networks design. Adyghe Int. Sei. J. 2022. Vol. 22, No. 4. P. 39-56.
DOI: https://doi.org/10.47928/1726-9946-2022-22-4-39-56

The author has read and approved the final version of the manuscript.
Submitted 18.11.2022; approved after reviewing 28.11.2022; aeeepted for publication 14.12.2022

© Abazokov M. В.,
Bagov М. А.,
Kudaev V. Ch., 2022

REFERENCES

1. V. P. Bulatov, L. I. Kassinskaya Nekotorye metody minimizatsii vognutoy funktsii na vypuklom mnogogrannike. Metody optimizatsii i ikh prilozheniya. Irkutsk: SEI SO AN SSSR, 1987. P. 151-172.
2. E. G. Antsiferov, L. T. Ashchepkov, V. P. Bulatov Metody optimizatsii i ikh prilozheniya. Ch. 1. Matematicheskoe programmirovanie. Izdatel’stvo «Nauka», Novosibirsk, 1990. 158 p. ISBN 5-02-029658-9.
3. V. A. Trubin, V. S. Mikhalevich, N. Z. Shor Optimizatsionnye zadachi proizvodstvenno -transportnogo planirovaniya. Izdatel’stvo “Nauka Moskva. 1986. 260 p.
4. A. P. Merenkov, E. V. Sennova, S. V. Sumarokov i dr. Matematicheskoe modelirovanie i optimizatsiya sistem tcplo-, vodo-, nefte- i gazosnobzheniya, Nauka, Novosibirsk, 1992, 407 p.
5. V. Ch. Kudayev Ranks of extrema and structural optimization of the big network systems // News of the Kabardin-Balkar Scientific Center of the Russian Academy of Sciences, 2016, No. 4 (72). P. 15-24.
6. V. Ch. Kudaev, M. B. Abazokov Rank optimization for flow networks, Vcstnik KRAUNC. Fiz.-mat. nauki. 2018, 24: 4. P. 178-185. DOI: 10.18454/2079-6641-2018-24-4 178-185
7. V. Ch. Kudaev, M. B. Abazokov Computer design of stream networks of P-th optimality rank. News of the Kabardin-Balkar Scientific Center of the Russian Academy of Sciences, 2019, No. 6(92). P. 122-131. DOE10.35330/1991-6639-2019-6-92-122-131
8. М. В. Abazokov, V. Ch. Kudaev Bush optimization method for high ranked stream networks. Vestnik KRAUNC. Fiz.-mat. nauki. 2021, 37: 4. P. 104-118. DOI: 10.26117/2079-6641-2021-374-104-118
9. A. P. Merenkov Matematicheskie modeli i metody dlya analiza optimal’nogo proektirovaniya truboprovodnykh sistem: Avtoref. dis. … d-ra fiz.-mat. nauk. Novosibirsk: Sektsiya kibernetiki Ob”edinennogo uchenogo soveta SO AN SSSR, 1974. 34 p.
10. O. A. Nekrasova, V. Ya. Khasilev Optimal’noe derevo truboprovodnoy sistemy. Ekonomika i mat. metody, 1970, V. 4, No. 3. P. 427-432.
11. E. N. Gordeev, O. G. Tarastsov Zadacha Shteynera. Obzor. Diskretnaya matematika. V. 5, vyp. 2, 1993. P. 3-28.
12. Z. A. Melzak On the problem of Steiner. Canad. Math. Bull. 1961. V. 4. P. 143-148.
13. E. N. Gilbert Minimal Cost Communication Networks. Bell System technological Journal. 1967, No. 9. P. 48-50.
14. M. A. Bagov Postrocnic potokovoy scti Shteynera 2-go ranga optimal’nosti. Izvcstiya KBNTs RAN. 2021. V. 104. No. 6. P. 185-203. DOI: 10.35330/1991-6639-2021-6-104-185-203
15. M. A. Bagov, V. C. Kudaev Construction of the Current Steiner Network of the Second Optimality Rank. J Math Sci 253, 488-499 (2021). https://doi.org/10.1007/sl0958-021-05245-l
16. M. A. Bagov A solution with nonlocal effect to the Steiner problem in networks, Vestnik KRAUNC. Fiz.-mat. nauki. 2018, 24: 4. P. 148-157. DOI: 10.18454/2079-6641-2018-24-4-148-157
17. N. N. Abramov i dr. Raschct vodoprovodnyh setej, Strojizdat, M., 1983. 278 p.

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук