Press "Enter" to skip to content

Adyghe Int. Sci. J. Vol. 22, No 2. P. 29-33

Adyghe Int. Sci. J. Vol. 22, No 2. P. 29-33. ISSN 1726-9946

Read article                                                                                                                  Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2022-22-2-29-33

MATHEMATICS

MSC 35L25 Original Article

About one mixed problem for the inhomogeneous Hallaire equation

Ruzanna Khasanbievna Makaova
Junior Researcher of department Mixed type equations of Institute of Applied Mathematics and Automation of KBSC RAS (360017, 89 А Shortanova St., Nalchik, Russia), ORCID: https://orcid.org/ 0000-0003-4095-2332, makaova.ruzanna@mail.ru

Abstract. For the inhomogeneous Hallaire equation, a mixed boundary value problem is studied. The existence and uniqueness theorem for a regular solution is proved. An explicit form of the regular solution of the problem under study is written out.

Keywords: inhomogeneous Hallaire equation, mixed problem, regular solution, Fourier method

Acknowledgments: the author are thankful to the anonymous reviewer for his valuable remakes.

For citation. R. Kh. Makaova About one mixed problem for the inhomogeneous Hallaire equation. Adyghe Int. Sci. J. 2022. Vol. 22, No. 2. P. 29–33. DOI: https://doi.org/10.47928/1726-9946-2022-22-2-29-33

The author has read and approved the final version of the manuscript.
Submitted 24.06.2022; approved after reviewing 28.06.2022; accepted for publication 04.07.2022.

© Makaova R. Kh., 2022

REFERENCES

1. M. Hallaire L’eau et la productions vegetable. Institut National de la Recherche Agronomique. 1964. Vol. 9.
2. A. M. Nakhushev Zadachi so smeshcheniem dlya uravnenij v chastnyh proizvodnyh [Problems with displacement for partial differential equations]. M.: Nauka, 2006. 287 p.
3. R. E. Showalter, T. W. Ting Pseudoparabolic partial differential equations. SIAM J. Math. Anal. 1970. Vol. 1, No. 1. P. 1–26.
4. D. Colton Pseudoparabolic Equations in One Space Variable. Journal of Differ. Equations. 1972. Vol. 12, no. 3. P. 559–565.
5. М. Kh. Shkhanukov Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media. Differ. Uravn. 1982. Vol. 18, No. 4. P. 689–699.
6. V. А. Vogahova A boundary value problem with A. M. Nakhushev’s nonlocal condition for a pseudoparabolic equation of moisture transfer. Differ. Uravn. 1982. Vol. 18, No. 18. P. 280–285.
7. R. Kh. Makaova The second boundary value problem for the generalized Hallaire equation with Riemann-Liouville fractional derivative. Reports AIAS. 2015. Vol. 17, No. 3. P. 35–38.
8. R. Kh. Makaova The first boundary value problem ib a nonlocal setting for the generalized Hallaire equation with Riemann-Liouville fractional derivative.
9. R. Kh. Makaova Mixed problem for the inhomogeneous Hallaire equation. Reports AIAS. 2021. Vol. 21, No. 4. P. 18–21.

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук