Adyghe Int. Sci. J. Vol. 23, No 4. P. 16-22.
Read article Contents of this issue
DOI: https://doi.org/10.47928/1726-9946-2023-23-4-16-22
EDN: ECLJES
MATHEMATICS
MSC 34A08, 34B05 | Original Article |
On the correctness of initial problems for the fractional
diffusion equation
Fatima Takhirovna Bogatyreva
Junior researcher, Institute of Applied Mathematics and Automation, KBSC RAS (360000, Russia, Nalchik, Shortanova St. 89 A), ORCID https://orcid.org/0000-0003-1765-066X, fatima_bogatyreva@bk.ru
Abstract. The paper studies a second-order parabolic partial differential equation with fractional differentiation with respect to a time variable. The fractional differentiation operator is a linear combination of the Riemann-Liouville and Gerasimov-Caputo fractional derivatives. It is shown that the distribution of orders of fractional derivatives, included in the equation affects the correctness of the initial problems for the equation under consideration.
Keywords: fractional diffusion equation, Riemann–Liouville operator, Gerasimov–Caputo operator, fractional derivative, Wright function.
Acknowledgments: the author are thankful to the anonymous reviewer for his valuable remakes.
For citation. Bogatyreva F. T. On the correctness of initial problems for the fractional diffusion equation. Adyghe Int. Sci. J. 2023. Vol. 23, No. 4. P. 16–22. DOI: https://doi.org/10.47928/1726-9946-2023-23-4-16-22; EDN: ECLJES
The author has read and approved the final version of the manuscript.
Submitted 18.12.2023; approved after reviewing 21.12.2023; aeeepted for publication 22.12.2023.
© Bogatyreva F. T., 2023
REFERENCES
1. Pskhu A. V. Solution of the first boundary value problem for a fractional-order diffusion equation. Differential Equations. 2003. Vol. 39, № 9. P. 1359–1363. https://doi.org/10.1023/B:DIEQ. 0000012703.45373.aa
2. Pskhu A. V. Solution of boundary value problems for the fractional diffusion equation by the Green function method. Differential Equations. 2003. Vol. 39, No 10. P. 1509–1513. https://doi.org/10.1023/ B:DIEQ.0000017925.68789.e9
3. Eidelman S. D., Kochubei A. N. Cauchy problem for fractional diffusion equations. Journal of Differential Equations. 2004. Vol. 199, No 2. P. 211–255.
4. Pskhu A. V. Uravnenija v chastnyh proizvodnyh drobnogo porjadka [Fractional partial differential equations]. M.: Nauka, 2005.
5. Pskhu A. V. Uravnenie diffuzii drobnogo porjadka so mnogimi vremennymi peremennymi [Fractional diffusion equation with many time variables]. Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 3, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara. 2006. P. 187–190.
6. Luchko Yu. Boundary value problems for the generalized timefractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 2009. Vol. 12, No 4. P. 409–422.
7. Luchko Yu. Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 2011. Vol. 374, No 2. P. 538–548.
8. Mamchuev M. O. Kraevye zadachi dlya uravnenij i sistem uravnenij s chastnymi proizvodnymi drobnogo poryadka [Boundary value problems for equations and systems of equations with partial differentials of fractional order]. Nalchik. 2013. 200 p.
9. Pskhu A. V. Green functions of the first boundary-value problem for a fractional diffusion-wave equation in multidimensional domains. Mathematics. 2020. No 8(4). Article id. 464.
10. Pskhu A. V. Stabilization of solutions to the Cauchy problem for fractional diffusion-wave equation. Journal of Mathematical Sciences. 2020. No 250. P. 800–810.
11. Pskhu A. V., Rekhviashvili S. Fractional diffusion-wave equation with application in electrodynamics. Journal of Mathematical Sciences. 2020. No 8.
12. Pskhu A. V., Ramazanov M. I., Gulmanov N. K., Iskakov S. A. Boundary value problem for fractional diffusion equation in a curvilinear angle domain. Bulletin of the Karaganda university. Mathematics series. 2022. No 1(105)/2022. P. 83–95.
13. Pskhu A. V. Uravnenie drobnoj diffuzii s operatorom diskretno raspredelennogo differencirovaniya [Fractional diffusion equation with discretely distributed differentiation operator]. Sib. Elektron. Mat. Izv. 2016. Vol. 13. P. 1078–1098.
14. Mamchuev M.O. Fundamental solution of a loaded second-order parabolic equation with constant coefficients. Differential Equations, 2015. Vol. 51, No. 5. P. 620–629
15. Mamchuev M.O. Modified Cauchy problem for a loaded second-order parabolic equation with constant coefficients. Differential Equations, 2015. Vol. 51, No. 9. P. 1137–1144.
16. Bogatyreva F. T. O predstavlenii resheniya uravneniya diffuzii s operatorami Dzhrbashyana-Nersesyana [On representation of solution of the diffusion equation with Dzhrbashyan–Nersesyan operators]. Vestnik KRAUNC. Fiz.-Mat. Nauki. 2022. Vol. 40, No. 3. P. 16–27.
17. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. M.: Fizmatlit, 2003. 272 p.
18. Ditkin V. A., Prudnikov A. P. Integral’nye preobrazovaniya i operacionnoe ischislenie [Integral transformations and operational calculus]. 1961.
This work is licensed under a Creative Commons Attribution 4.0 License.