Press "Enter" to skip to content

Vol. 24, No. 1. P. 58–71

Adyghe Int. Sci. J. Vol. 24, No. 1. P. 58–71. 

Read article                                                                                                                    Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2024-24-1-58-71
EDN: PGELNG

CHEMISTRY

  Original Article

Study of the mechanism of joint electroreduction

of Dy3+ and Co2+ ions in the eutectic KCl-NaCl-CsCl

melt at 823 K

Hasbi Bilyalovich Kushkhov
PhD in Chemistry, Professor, full member of AIAS, Head of the Department of Inorganic and Physical Chemistry, Kabardino-Balkarian State University named after M. Berbekova, ORCHID: 0000-0002-8613-9868, hasbikushchov@yahoo.com
Astemir Andzorovich Khotov
graduate student of the Department of Inorganic and Physical Chemistry, Kabardino-Balkarian State University named after H. M. Berbekova, astemir.xotov@mail.ru
Abdulkader Moqbel Farhan Qahtan
PhD in chemistry, assistant of professor Head of the Department of General Chemistry, College of Education, Seiyun university (Seiyun, Yemen), ORCHID: 0009-0009-8923-7867

Abstract.The kinetic patterns of the electroreduction of the Co2+ ion in the eutectic melt KCl-NaCl-CsCl at 823 K have been determined. It has been established that the release potentials of metallic cobalt and dysprosium on an inert tungsten electrode in the molten KCl-NaCl-CsCl system differ by approximately 1.5 V. It has been shown that with the combined content of Co2+ and Dy3+ ions in the eutectic KCl-NaCl-CsCl melt, a certain depolarization of the electroreduction of dysprosium ions takes place on the metal cobalt pre-precipitated on the tungsten electrode with the formation of intermetallic phases of different compositions based on cobalt and dysprosium. The dissolution potentials of DyxCoy intermetallic phases of different compositions were determined using switch-off chronopotentiometry.

Keywords: ionic melts, electroreduction, electrochemical synthesis, dysprosium and cobalt ions, cyclic and square wave voltammetry, open-circuit chronopotentiometry.

Funding. This work was financially supported by RNF grant 23-23-00360.

Competing interests. There are no conflicts of interest regarding authorship and publication. Contribution and Responsibility. All authors contributed to this article. Authors are solely responsible for providing the final version of the article in print. The final version of the manuscript was approved by all authors.

For citation. Kushkhov H. B., Hotov A. A., Qahtan A. M. F. Study of the mechanism of joint electroreduction of Dy3+ and Co2+ ions in the eutectic KCl-NaCl-CsCl melt at 823 K. Adyghe Int. Sci. J. 2024. Vol. 24, No. 1. Pp. 58–71. DOI: https://doi.org/10.47928/1726-9946-2024-24-1-58-71; EDN: PGELNG

Submitted 24.02.2024; approved after reviewing 20.03.2024; accepted for publication 27.03.2024.

                                                                                                                                             © Kushkhov Kh. B.,
                                                                                                                                                                              Hotov A. A.,
                                                                                                                                                                              Qahtan A. M. F., 2024

REFERENCES

  1. Tanaka M., Oki T., Koyama K., Narita H., and Oishi T. Recyclingof rare earths from scrap. Handb. Phys. Chem. RareEarths, 2013.Vol. 43. Pp. 159. DOI: 10.1016/B978-0-444-59536-2.00002-7
  2. Goodenough K. M., Wall F., and Merriman D. The rare earthelements: demand, global resources, and challenges for resourcingfuture generations. Nat. Resour. Res. 2018. Vol. 27, No. 2. Pp. 201. DOI: 10.1007/s11053-017-9336-5
  3. Rabatho J. P., Tongamp W., Takasaki Y., Haga K. and Shibayama A. Recovery of Nd and Dy from rare earth magneticwaste sludge by hydrometallurgical process. J. Mater. Cycles Waste Manage. 2013. Vol. 15, No. 2. Pp. 171. DOI: 10.1007/s10163-012-0105-6
  4. Firdaus M., Rhamdhani M. A., Durandet Y., Rankin W. J. and McGregor K. Review of hightemperature recovery of rareearth (Nd/Dy) from magnet waste. J. Sustain. Metall. 2016. Vol. 2, No. 4. Pp. 276. DOI: 10.1007/s40831-016-0045-9
  5. Murase K., Machida K. and Adachi G. Recovery of rare metals from scrap of rare earth intermetallic material by chemical vapour transport. J. Alloys Compd. 1995. Vol. 217, No. 2. Pp. 218. DOI: 10.1016/0925-8388(94)01316-A
  6. Uda T., Jacob K. T. and Hirasawa M. Technique for enhancedrare earth separation. Science. 2000. Vol. 289, No. 5488. Pp. 2326. DOI: 10.1126/science.289.5488.2326
  7. Uda T. Recovery of rare earths from magnet sludge by FeCl2. Mater. Trans. 2002. Vol. 43, No. 1. Pp. 55. DOI: 10.2320/matertrans.43.55
  8. Xu Y.C., Chumbley L.S. and Laabs F.C. Liquid metal extractionof Nd from NdFeB magnet scrap. Mater. Res. 2000. Vol. 15, No. 11. Pp. 2296. DOI: 10.1557/JMR.2000.0330
  9. Konishi H., Nohira T., and Ito Y. Formation and phase control of Dy alloy films by electrochemical implantation and displantation. J. Electrochem. Soc. 2001. Vol. 148, No. 7. Pp. 506. DOI: 10.1149/1.1379031
  10. Oishi T., Konishi H., Nohira T., Tanaka M. and Usui T. Separation and recovery of rare earth metals by molten salt electrolysis using alloy diaphragm. Kagaku Kogaku Ronbunshu. 2010. Vol. 36, No. 4. Pp. 299. DOI: 10.1252/kakoronbunshu.36.299
  11. Kobayashi S., Kobayashi K., Nohira T., Hagiwara R., Oishi T. and Konishi H. Electrochemical formation of Nd-Ni alloys in molten LiF-CaF2-NdF3. J. Electrochem. Soc. 2011. Vol. 158, No. 12. Pp. E142. DOI: 10.1149/2.053212jes
  12. Burris L., Steunenberg R. K., Miller W. E. CONF-861146-14.
  13. Toda T., Maruyama T., Moritani K., Moriyama H., Hayashi H. J. Nucl. Sci. Technol. 2009,Vol. 46, No. 1. Pp. 18.
  14. Koyama T., Iizuka M., Tanaka H., Tokiwai M., Shoji Y., Fujita R., Kobayas T. J. Nucl. Sci. Technol. 1997. Vol. 34, Pp. 384.
  15. Souˇcek P., Malmbeck R., Nourry C., Glatz J.-P. Pyrochemical Reprocessing of Spent Fuel by Electrochemical Techniques Using Solid Aluminium Cathodes. Energy Procedia. 2011. Vol. 7. Pp. 396–404, DOI: 10.1016/j.egypro.2011.06.052
  16. Conocar O., Douyere N., Lacquement J. Extraction behavior of actinides and lanthanides in a molten fluoride/liquid aluminum system. Journal of nuclear materials. 2005. Vol. 344, No. 1. Pp. 136–141, DOI: 10.1016/j.jnucmat.2005.04.031
  17. Liu K., Yuan L.-Y., Liu Y.-L., Zhao X.-L., He H., Ye G.-A., Chai Z.-F., Shi W.-Q. Electrochemical reactions of the Th4+/Th couple on the tungsten, aluminum and bismuth electrodes in chloride molten salt. Electrochimica Acta. 2014. Vol. 130. Pp. 650–659. DOI: 10.1016/j.electacta.2014.03.085
  18. Liu K., Liu Y.-L., Yuan L.-Y., Zhao X.-L., He H., Ye G.-A., Chai Z.-F., Shi W.-Q. Electrochemical formation of erbium-aluminum alloys from erbia in the chloride melts. Electrochimica Acta. 2014. Vol. 116. Pp. 434–441, DOI: 10.1016/j.electacta.2013.11.093
  19. Liu K., Liu Y.-L., Yuan L.-Y., Zhao X.-L., Chai Z.-F., Shi W.-Q. Electroextraction of gadolinium from Gd2O3 in LiCl–KCl–AlCl3molten salts. Electrochimica Acta. 2013. Vol. 109. Pp. 732–740. DOI:10.1016/j.electacta.2013.07.084
  20. Liu K., Liu Y.-L., Yuan L.-Y., He H., Yang Z.-Y., Zhao X.-L., Chai Z.-F., Shi W.-Q. Electroextraction of samarium from Sm2O3 in chloride melts. Electrochimica Acta. 2014. Vol. 129. Pp. 401–409. DOI: 10.1016/j.electacta.2014.02.136
  21. Castrillejo Y., Bermejo M., Barrado A., Pardo R., Barrado E., Mart’ınez A. Electrochemical behaviour of dysprosium in the eutectic LiCl–KCl at W and Al electrodes. Electrochimica acta. 2005. Vol. 50, No. 10. Pp. 2047–2057. DOI: 10.1016/j.electacta.2004.09.013
  22. Chang K. G., Lu X. P., Du F. Y., Zhao M. S. Determination of the apparent standard potential of the Dy/Dy (III) system in the LiCl(c) KCl eutectic. Chinese Journal of Chemistry. 1994. Vol. 12, No. 6. Pp. 509–515. DOI: 10.1002/cjoc.19940120605
  23. Konishi H., Nohira T., Ito Y. Morphology control of Dy-Ni alloy films by electrochemical displantation. Electrochemical and solid-state letters. 2002. Vol. 5, No. 12. Pp. B37–B39.
  24. Kushkhov H. B., Uzdenova A. S., Saleh M. M. A., Qahtan A. M. F., Uzdenova L. A. The Electroreduction of Gadolinium and Dysprosium Ions in Equimolar NaCl-KCl Melt. American Journal of Analytical Chemistry. 2013. Vol. 04, No. 06. Pp. 39–46. DOI: 10.4236/ajac.2013.46A006
  25. Saila A., Gibilaro M., Massot L., Chamelot P., Taxil P., Affoune A.-M. Electrochemical behavior of dysprosium (III) in LiF-CaF2 on Mo, Ni and Cu electrodes. Journal of Electroanalytical Chemistry. 2010. Vol. 642, No. 2. Pp. 150–156. DOI:10.1016/J.JELECHEM.2010.03.002
  26. Zhang M. L., Yang Y. S., Han W., Li M., Ye K., Sun Y., Yan Y. D. Electrodeposition of magnesium-lithium-dysprosium ternary alloys with controlled components from dysprosium oxide assisted by magnesium chloride in molten chlorides. Journal of Solid State Electrochemistry. 2013. Vol. 17 No. 10, Pp. 2671–2678, DOI: 10.1007/s10008-013-2146-8
  27. Yang Y. S., Zhang M. L., Han W., Sun P. Y., Liu B., Jiang H. L., Jiang T., Peng S. M., Li M., Ye K., Yan Y. D. Selective electrodeposition of dysprosium in LiCl-KCl-GdCl3-DyCl3 melts at magnesium electrodes: Application to separation of nuclear wastes. Electrochimica Acta. 2014. Vol. 118. Pp. 150–156. DOI: 10.1016/j.electacta.2013.11.145
  28. Yasuda K., Kobayashi S., Nohira T., Hagiwara R. Electrochemical formation of Dy–Nialloys in molten NaCl–KCl–DyCl3. Electrochimica Acta. 2013. Vol. 106. Pp. 293–300. DOI: 10.1016/j.electacta.2013.05.095
  29. Konishi H., Nohira T., Ito Y. Morphology Control of Dy-Ni Alloy Films by Electrochemical Displantation. Electrochemical and Solid-State Letters. 2002. Vol. 5, No. 12. Pp. B37.
  30. Konishi H., Nohira T., Ito Y. Formation of Dy–Fe alloy films by molten salt electrochemical process. Electrochimica acta. 2002. Vol. 47, No. 21. Pp. 3533–3539. DOI: 10.1016/S0013-4686(02)00323-7
  31. Kushkhov Kh., Ali Zh., Khotov A., Kholkina A. Mechanism of Dy3+ and Nd3+ Ions Electrochemical Coreduction with Ni2+, Co2+, and Fe3+ Ions in Chloride Melts. Materials 2021;14:7440. DOI: 10.3390/ma14237440.
  32. Khushkhov Kh. B., Kholkina A. S., Khotov A. A., Ali Zh. Z., Zhanikayeva Z. A., Kvashin V. A., Kovrov V. A., Mushnikova A. A., Mirzayants D. P. Electrochemical Behavior of Dysprosium Ion and Its Co – Electroreduction with Nickel Ions in the Molten KCl-NaCl-CsCl Eutectic. Processes 2023, 11(10), 2818; DOI: 10.3390/pr11102818
  33. Volkov S. V., Grishenko V. F., Delimarskyi Yu. K. Koordinatsionnaya khimiya solevykh rasplavov (Coordination chemistry of molten salts) Naukova Dumka, Kyiv. 1977. 332 p. (in Russian)
  34. Sytchev J., Kushkhov H., Sychev J. Voltammetric investigation of the reduction processes of nickel cobalt and iron ions in chloride and chloro – fluoride melts. In proceedings of Int. Computer Sci. Conf. Miskolc. Hungary. 2000. Pp. 69.
  35. Kushkhov Kh. B., Supatashvili D. G., Shapoval V. I., Novoselova V. I., Gasviana N. A. Sovmestnoye electrovosstanovleniye molybdat iona s kationamy Ni y Co v khloridnykh rasplavakh (Mutual electroreduction of molybdat-ion with Ni and Co cations in chloride melts. Electrokhimiya. 1990. Vol. 26, No. 3. Pp. 300–304. (in Russian)
  36. Bard A. J., Faulkner L. R. Electrochemical methods: fundamentals and applications. Wiley. New York, USA. 1980. 850 p.
  37. Scholz F. Electroanalytical methods: Guide to Experiments and Applications, 2nd ed. Springer, 2010, XXVII, 359 p.
  38. Ramaley L., Krause M. S. Theory of square wave voltammetry. Analyt. Chem. 1969. Vol. 41. Pp. 1362—1365. DOI: 10.1021/ac60280a005
  39. Settle J. L., Nagy Z. Metal deposition-dissolution in molten halides-on the question of measurability of fast electrode-reaction rates. J. Electrochem. Soc. 1985, Vol. 132. Pp. 1619—1627. DOI: 10.1149/1.2114177

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук