Press "Enter" to skip to content

Vol. 24, No. 2. P. 16–26

Adyghe Int. Sci. J. Vol. 24, No. 2. Pp. 16–26. 

Read article                                                                                                                     Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2024-24-2-16-26
EDN: PGELNG

MATHEMATICS

UDK 517.956.32

MSC 35М12

Original Article

Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation

Giraslan Anatolevich Balkizov
Ph.D. (Phys & Math) Leading Researcher, Department of Mixed Type Equations, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), https://orcid.org/0000-0001-5329-7766, Giraslan@yandex.ru

Abstract. The paper investigates a nonlocal problem with a shift to the conjugation of model equations of parabolic and hyperbolic types of the second order, consisting of a heat equation in the parabolic part of the mixed domain and a degenerate hyperbolic equation of the first kind in the other part. Using an analogue of the Tricomi method and known properties of the theory of fractional calculus, sufficient conditions for given functions are found to ensure the existence of a unique solution to the problem under study that is regular in the domain under consideration. In one particular case, the solution to the problem is written out explicitly.

Keywords: mixed type equation, heat equation, degenerate hyperbolic equation, fractional calculus, Volterra equation, Tricomi method, method of integral equations.

Funding. The work was not carried out within the framework of funds.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. The author participated in the writing of the article and is fully responsible for submitting the final version of the article to the press.

For citation. Balkizov G. A. Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation. Adyghe Int. Sci. J. 2024. Vol. 24, No. 2. Pp. 16–26. DOI: https://doi.org/10.47928/1726-9946-2024-24-2-16-26; EDN: PGELNG

Submitted 20.06.2024; approved after reviewing 24.06.2024; aeeepted for publication 25.06.2024.

© Balkizov G. A., 2024

REFERENCES

  1. Smirnov M. M. Mixed type equations. 296 p. In Russian
  2. Gellerstedt S. Sur une equation lineare aux derivees partielles de type mixte. Arkiv Mat., Astr. och Fysik. Bd 25A. 1937. No. 29. Pp. 1–23.
  3. Protter M. H. The Cauchy problem for a hyperbolic second-order equation with data on the parabolic line. Canad. J. of Math. 1954. Vol. 6, No. 4. Pp. 542–553.
  4. Bitsadze A. V. Mixed type equations. 164 p. In Russian
  5. Lykov A. V. Application of methods of thermodynamics of irreversible processes to the study of heat and mass transfer // Inzhenerno-fizicheskij zhurnal. 1955. Vol. 9, No. 3. Pp. 287–304. In Russian
  6. Nakhushev A. M. Equations of mathematical biology. 301 p. In Russian
  7. Gellerstedt S. Sur un probleme aux limites pour une equation lineaire aux derivees partielles du~second ordre de tipe mixte. Uppsala. 1935. Pp. 3–91.
  8. Gellerstedt S. Sur un probleme aux limites pour une equation lineaire aux derivees partielles du~second ordre de tipe mixte. These doct. Uppsala, 1935. 240 p.
  9. Nakhushev A. M. Fractional calculus and its application. 272 p. In Russian
  10. Bers L. Mathematical issues of subsonic and transonic gas dynamics. 208 p. In Russian
  11. Frankl F. I. Selected works on gas dynamics. 771 p. In Russian
  12. Tricomi F. Lectures on partial differential equations. 444 p. In Russian
  13. Samko S. G., Kilbas A. A., Marichev O. I. Fractional integrals and derivatives and some of their applications. 688 p. In Russian
  14. Struchina G. M. The problem on conjugation of two equations. // Engineering and Physical Journal. 1961. Vol. 4, No. 11. Pp. 99–104.
  15. Zolina L. A. On the boundary value problem for the model equation of hyperbolic-parabolic type. Journal of Computational Mathematics and Mathematical Physics. 1966. Vol. 6, No. 6. Pp. 991–1001.
  16. Sabitov K. B. To the theory of equations of mixed parabola-hyperbolic type with spectral parameter. Differential Equations. 1989.  25, No. 1. Pp. 117–126.
  17. Bzhikhatlov H. G., Nakhushev A. М. On one boundary value problem for an equation of mixed parabola-hyperbolic type.  Reports of the USSR Academy of Sciences. 1968.  183, No. 2. Pp. 261–264.
  18. Salakhitdinov M. S., Berdyshev A. С. About some nonlocal boundary value problems for the mixed parabola-hyperbolic equation. Izvestiya AN UzSSR. Series of physics and mathematics. 1982. No. 4. Pp. 25–31.
  19. Salakhitdinov M. S., Berdyshev A. С. The Tricomi problem for the mixed parabola-hyperbolic equation.  Izvestiya AN UzSSR. Series of physics and mathematics. 1983. No. 4. Pp. 20–25.
  20. Dzhuraev T. D., Sopuev A., Mamazhanov M. Boundary value problems for equations of parabola-hyperbolic type. Tashkent: FAN. 1986. 220 p.
  21. Sabitov K. B. Direct and inverse problems for equations of mixed parabola-hyperbolic type. M.: Nauka. 2016. 272 p.
  22. Nakhushev A. M. Some boundary value problems for hyperbolic equations and equations of mixed type. Differ. Uravn. 1969.  Vol. 5, No. 1. Pp. 44–59. In Russian
  23. Nakhushev A. M. Problems with displacement for partial differential equations. 287 p., in
  24. Zhegalov V. I. Boundary value problem for a mixed type equation with a boundary condition on both characteristics with discontinuities on the transition line. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta im. IN AND. Lenin. Vol. 122, No. 3, Pp. 3–16. In Russian
  25. Nakhushev A. M. A new boundary value problem for a degenerate hyperbolic equation. Doklady AN SSSR. 1969.  187, No. 4. Pp. 736–739. In Russian
  26. Balkizov Zh. A. A problem with a shift for a degenerate hyperbolic equation of the first kind. Bulletin of the Samara State Technical University. Series of physical and mathematical sciences. 2021. Vol. 25, No. 1. Pp. 21–34. In Russian
  27. Balkizov G. A. Boundary value problems with data on opposite characteristics for a second-order mixed-hyperbolic equation. Adyghe Int. Sci. J. 2023. Vol. 23, No. 1. Pp. 11–19. DOI: https://doi.org/10.47928/1726-9946-2023-23-1-11-19; EDN: ACKBLJ
  28. Smirnov M. M. Degenerate hyperbolic equations. 160 p. In Russian
  29. Dgrbashyan M. M. Integral transformations and representations of functions in the complex plane. 672 p. In Russian

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук