Press "Enter" to skip to content

Adyghe Int. Sci. J. Vol. 23, No 4. P. 28-33. 

Adyghe Int. Sci. J. Vol. 23, No 4. P. 28-33. 

Read article                                                                                                                     Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2023-23-4-28-33
EDN: UUZSAY

MATHEMATICS

MSC 35A02, 35C15 Original Article

Boundary value problem for the loaded
McKendrick – von Foerster equation of fractional order

Fatima Mukhamedovna Losanova
Researcher, Laboratory of Synergetic Problems, Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center, Russian Academy of Sciences (360000, Russia, Nalchik, Shortanova St. 89A ), ORCID https://orcid.org/0000-0002-6342-7162, losanovaf@gmail.com
Raisa Osmanovna Kenetova
Candidate of Physical and Mathematical Sciences, Head of Laboratory of Synergetic Problems, Institute of Applied Mathematics and Automation, Kabardino-Balkarian Scientific Center, Russian Academy of Sciences (360000, Russia, Nalchik, Shortanova St. 89A ), kenetova_r@mail.ru

Abstract. The paper considers the loaded McKendrick-von Foerster equation of fractional order, which characterizes the population dynamics with age structure taking migration into account. The boundary value problem in the rectangular domain is studied. The solution is found by reduction to the Volterra integral equation of the 2nd kind. The existence and uniqueness theorem of the problem under study is provedn.

Keywords: Gerasimov – Caputo derivative, loaded equation, McKendrick-von Foerster equations, Wright function, fractional equations.

Acknowledgments: the authors are thankful to the anonymous reviewer for his valuable remakes.

The authors declare no conflict of interest.

For citation. Losanova F. M., Kenetova R. O. Boundary value problem for the loaded McKendrick – von Foerster equation of fractional order. Adyghe Int. Sci. J. 2023. Vol. 23, No. 4. P. 28–33. DOI: https://doi.org/10.47928/1726-9946-2023-23-4-28-33; EDN: UUZSAY

The author has read and approved the final version of the manuscript.
Submitted 11.12.2023; approved after reviewing 15.12.2023; aeeepted for publication 20.12.2023.

© Losanova F. M.,
Kenetova R. O., 2023

REFERENCES

1. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications]. M: FIZMATLIT. 2003. 272 p.
2. Nakhushev A. M. Uravneniya matematicheskoy biologii. M.: Vyssh. shk. 1995. 301 p.
3. Pskhu A. V. Krayevaya zadacha dlya differentsial’nogo uravneniya s chastnymi proizvodnymi drobnogo poryadka. Izvestiya KBNTS RAN, 2002. № 1(8). P. 76–78. (in Russian)
4. Mamchuev M. O. Krayevaya zadacha dlya uravneniya pervogo poryadka s chastnoy proizvodnoy drobnogo poryadka s peremennymi koeffitsiyentami. Doklady AMAN. 2009. Vol 11, No. 1. P. 32–35. (in Russian)
5. Mamchuev M. O. Zadacha Koshi v nelokal’noy postanovke dlya uravneniya pervogo poryadka s chastnoy proizvodnoy drobnogo poryadka s peremennymi koeffitsiyentami. Doklady AMAN. 2009. Vol 11, No. 2. P. 21-24. (in Russian)
6. Pskhu A. V. O krayevoy zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineynoy granitsey. Differents. uravn., 2015. Vol 51, No. 8. P. 1076-1082. (in Russian)
7. Kaygermazov A. A., Kudayeva F. KH. Statsionarnyye sostoyaniya obobshchen-noy populyatsionnoy modeli Veybulla. Yuzhno – Sibirskiy nauchnyy vestnik, 2015. Vol 17, No. 1(19), mart. P. 10–14. (in Russian)
8. Losanova F. M., Kenetova R. O. Nelokal’naya zadacha dlya obobshchennogo uravneniya MakKendrika – fon Ferstera s operatorom Kaputo. Nelineynyy mir, 2018. Vol 16, No. 1. P. 49–53. (in Russian)
9. Losanova F. M. Inverse problem for McKendrick von Foerster equation with Caputo operator. Vestnik KRAUNC. Fiz.-mat. nauki. 2022, 40: 3, 111-118. DOI: 10.26117/2079-6641-2022-40-3-111-118
10. Pskhu A. V. Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Fractional Partial Differential Equations]. Moscow, Nauka, 2005, 199. (in Russian)

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук