Press "Enter" to skip to content

Vol. 24, No. 1. P. 36–44

Adyghe Int. Sci. J. Vol. 24, No. 1. P. 36–44. 

Read article                                                                                                                     Contents of this issue



MSC 32А10; 32А37 Original Article

On some formulas for fractional integration of one Fox function with five parameters

Fatima Gidovna Khushtova
Researcher of Department of Fractional Calculus, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), Ph.D.,,

Abstract. The study obtained Riemann – Liouville and Erdelyi – Kober formulas for fractional integration of five-parameter special Fox function. The paper gives an integral representation of the function under consideration in terms of the Mellin – Barnes integral, conditions for absolute convergence, and asymptotic expansions both for large and small values of the argument. We obtained the formulas proved, using the above integral representation and known power rules for integration. For partial parameters, we got some well-known elementary and special functions.

Keywords: Fox function, Riemann – Liouville fractional integration, Erdelyi – Kober fractional integration.

Funding. The work was not carried out within the framework of funds.

Competing interests. There are no conflicts of interest regarding authorship and publication.

Contribution and Responsibility. The author participated in the writing of the article and is fully responsible for submitting the final version of the article to the press.

For citation. Khushtova F. G. On some formulas for fractional integration of one Fox function with five parameters. Adyghe Int. Sci. J. 2024. Vol. 24, No. 1. Pp. 36–44. DOI:; EDN: RMXQDU.

Submitted 11.03.2024; approved after reviewing 20.03.2024; aeeepted for publication 22.03.2024.

© Khushtova F. G., 2024


1. Khushtova F. G. O nekotoryh svojstvah odnoj funkcii Foksa [On some properties of a Fox function] Chelyabinskiy Fiziko-Matematicheskiy Zhurnal. 2023. Vol. 8, Issue 2. Pp. 203–211.
2. Bateman H., Erdeyi A. Higher Transcendental Functions. V. I. New York, Toronto, London, McGraw-Hill Book Company. 1953. 302 p.
3. Kuznetsov D. S. Spetsial’nye funktsii [Special functions]. M.: Vysshaya shkola, 1965. 424 p.
4. Lebedev N. N. Spetsial’nye funktsii i ikh prilozheniya [Special functions and their applications]. M.: Fizmatlit, 1963. 358 p.
5. Nakhushev A. M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application]. M.: Fizmatlit, 2003. 272 p.
6. Pskhu A. V. Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Fractional Partial Differential Equations]. M.: Nauka, 2005. 199 p.
7. Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon, 1993. 1016 p.
8. Sitnik S. M., Shishkina E. L. Metod operatorov preobrazovaniya dlya differentsial’nykh uravneniy s operatorami Besselya [Method of transformation operators for differential equations with Bessel operators]. M.: Fizmatlit, 2019. 224 p.
9. Kilbas А. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, 204. Amsterdam: Elsevier Science, Publishers BV, 2006. 499 p.
10. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady. Elementarnye funktsii [Integrals and series. Elementary Functions]. V. 1. M.: Fizmatlit, 2002. 632 p.
11. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady. Dopolnitel’nye glavy [Integrals and series. Additional chapters]. V. 3. M.: Fizmatlit, 2003. 688 p.
12. Kilbas А. A., Saigo M. H-Transform. Theory and Applications. London, New York and Washington: Chapman and Hall/CRC, Boca Raton, D.C., 2004. 389 p.
13. Mathai A. M., Saxena R. K., Haubold H.J. The H-function. Theory and Applications. New York: Springer, 2010. 268 p.
14. Khushtova F. G. Nekotorye formuly drobnogo integrirovanija ot odnoj funkcii Foksa s chetyr’mja parametrami [On some formulas for fractional integration of one Fox function with four parameters] Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. 2022. V. 22, No. 4. Pp. 29–38.
15. Marichev O. I. Handbook of integral transforms of higher transcendental functions: theory and algorithmic tables, Ellis Horwood Ltd., Chichester, New York: Halsted Press, 1983. 336 p.

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук