Adyghe Int. Sci. J. Vol. 22, No 2. P. 11-20. ISSN 1726-9946
Read article Contents of this issue
DOI: https://doi.org/10.47928/1726-9946-2022-22-2-11-20
MATHEMATICS
MSC 32A10; 32A37 | Original article |
Resolution of the boundary value problem for a mixed equation of the fourth order
Ashirmet Bekievich Bekiev
Associate Professor of the Department of Applied Mathematics and Informatics, Karakalpak State University named after Berdakh (Nukus, 61 2236047, Uzbekistan), Candidate of Physical and Mathematical Sciences, ashir1976@mail.ru
Rakhim Muhammetovich Shikhiyev
Assistant of the Department of Applied Mathematics and Informatics, Karakalpak State University named after Berdakh (Nukus, 61 2236047, Uzbekistan), raximm82@gmail.com
Abstract. The study of boundary value problems for high-order partial differential equations plays an important role, because many scientific and practical studies lead to boudary value problems for fourth-order partial differential equtions. In this work in a rectangular region for a fourth-order equation, a boundary value problem is considered. A criterion for the uniqueness and existence of a solution to a boundary value problem for a fourth-order equation is established. The solution is constructed as the sum of a series in terms of eigenfunctions of the corresponding spectral problem. The stability of the solution of this problem is proved.
Keywords: fourth-order equation, boundary value problem, uniqueness, existence, stability
Acknowledgments: the authors are thankful to the anonymous reviewer for his valuable remakes.
Conflict of interest: the authors declare no conflict of interest.
For citation. A. B. Bekiev, R. M. Shihiev Resolution of the boundary value problem for a mixed equation of the fourth order. Adyghe Int. Sci. J. 2022. Vol. 22, No. 2. P. 11–20.
DOI: https://doi.org/10.47928/1726-9946-2022-22-2-11-20
The authors have read and approved the final version of the manuscript.
Submitted 01.05.2022; approved after reviewing 07.06.2022; accepted for publication 15.06.2022.
© Bekiev A. B., Shikhiev R. M., 2022
REFERENCES
1. T. D. Dzhuraev, A. S. Sopuev K teorii differentsial’nykh uravnenii v chastnykh proizvodnykhchetvertogo poriadka [Theory of partial differential equations of fourth order]. Tashkent. Fan. 2000. 144.
2. D. Amanov Razreshimost’ i spektral’nye svojstva kraevyh zadach dlya uravnenij chetnogo poryadka [Solvability and spectral properties of boundary value problems for equations of even order]. Avtoref. dis. dokt. fiz. – matem. nauk. Tashkent. AN RUz. 2019. 64.
3. Sh. N. Amirov, A. I. Kozhanov Global Solvability of Initial Boundary-Value Problems for Nonlinear Analogs of the Boussinesq Equation. Mat. Zametki, 99:2 (2016), 171–180; Math. Notes, 99:2 (2016), 183–191. https://doi.org/10.4213/mzm10617
4. YA. T. Megraliev Obratnaya kraevaya zadacha dlya uravneniya izgiba tonkih plastinok s dopolnitel’nym integral’nym usloviem [Inverse boundary value problem for the bending equation of thin plates with an additional integral condition]. Dal’nevostochnyj matematicheskij zhurnal. 13, No. 1. 2013. 83–101.
5. Ya. T. Megraliev, B. K. Velieva Inverse boundary value problem for the linearized Benney-Luke equation with nonlocal conditions. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki. 29:2 (2019). 166–182. https://doi.org/10.20537/vm190203
6. M. M. Smirnov Model’noe uravnenie smeshannogo tipa chetvertogo porjadka [Modal equations of mixed type of the fourth order] Leningrad. Izd-vo LGU. 1972.
7. L. A. Teleshova Obratnye zadachi dlya parabolicheskih uravnenij vysokogo poryadka [Inverse problems for parabolic equations of higher order]. Dis. kand. fiz.-mat. nauk. Ulan-Ude. 2017. 155.
8. T. K. Yuldashev Ob odnom smeshannom differencial’nom uravnenii chetvertogo poryadka [On a mixed type fourth-order differential equation]. Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta. 47, No. 1. 2016. 119–128.
9. T. K. Yuldashev Mixed Boussinesq-type differential equation. Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica. 2016. No. 2(33). 13–26.
10. K. S. Fayazov, I. O. Khajiev A nonlocal boundary value problem for a fourth order mixed type equation. Ukrainskij matematichnij visnik. 17, No. 1. 2020. 30–40.
11. K. B. Sabitov Initial Boundary and Inverse Problems for the Inhomogeneous Equation of a Mixed Parabolic-Hyperbolic Equation. Mat. Zametki, 102:3 (2017). 415–435; Math. Notes, 102:3 (2017). 378–395.
https://doi.org/10.4213/mzm11521
12. K. B. Sabitov Pryamye i obratnye zadachi dlya uravnenij smeshannogo parabolo-giperbolicheskogo tip [Direct and inverse problems for equations of mixed parabolic-hyperbolic type]. M.: Nauka, 2016. 272.
13. K. B. Sabitov, I. A. Khadzhi The boundary-value problem for the Lavrent’ev–Bitsadze equation with unknown right-hand side. Izv. Vyssh. Uchebn. Zaved. Mat. 2011. No. 5. 44–52; Russian Math. (Iz. VUZ). 55:5 (2011). 35–42.
14. G. R. Yunusova Nonlocal problems for the equation of the mixed parabolic-hyperbolic type. Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya. 2011. No. 8(89). 108–117.
This work is licensed under a Creative Commons Attribution 4.0 License.