Press "Enter" to skip to content

Khushtova_Vol. 22, No 4. P. 29-38

Adyghe Int. Sci. J. Vol. 22, No 4. P. 29-38. ISSN 1726-9946

Read article                                                                                                         Contents of this issue

DOI: https://doi.org/10.47928/1726-9946-2022-22-4-29-38

MATHEMATICS

MSC 32А10; 32А37 Original Article

On some formulas for fractional integration of one Fox function with four parameters

Fatima Gidovna Khushtova
Researcher of Department of Fractional Calculus, Institute of Applied Mathematics and Automation of KBSC RAS, (360017, 89 A Shortanova St., Nalchik, Russia), Ph.D., http://orcid.org/0000-0003-4088-3621, khushtova@yandex.ru

Abstract. Solutions to many problems of mathematical physics, engineering and economics arc expressed through the so-called special functions. In the theory of special functions an important place is occupied by functions of the hypergeometric type. Many of them can be written in terms of the Meyer G-function. A generalization of the Meyer function is the Fox H-function. Some properties of this function can be obtained from its representation using the Mellin – Barnes integral. When deriving some formulas for this function for particular values of its parameters, due to the cumbersome writing of the Fox function, it is more convenient to use simplified notation. In this paper, we consider a special case of such a Fox function containing four parameters. For this function, Riemann-Liouville and Erdelyi-Kober fractional integration formulas arc obtained. An integral representation of the considered function h through the Mellin – Burns integral, we write out the conditions under which it converges absolutely, and the asymptotic expansions for this function for large and small values of the argument. The formulas proved in the paper are obtained using the indicated Mellin – Burns integral representation and the well-known integration formulas from power functions. For particular values of the parameters, the function under consideration yields some well-known elementary and special functions, and from the obtained formulas of fractional integration – the known integral values of these functions.
Keywords: Fox function, Mittag-Leffler type function, hypergeometric function, incomplete gamma function, Mellin – Barnes integral, degenerate hypergeometric Kummer function, Riemann-Liouville fractional integration, Erdelyi-Kober fractional integration

Acknowledgments: the author are thankful to the anonymous reviewer for his valuable remakes.

For citation. F. G. Khushtova On some formulas for fractional integration of one Fox function with four parameters. Adyghe hit. Sei. J. 2022. Vol. 22, No. 4. P. 29-38.
DOI: https://doi.org/10.47928/1726-9946-2022-22-4-29-38

The author has read and approved the final version of the manuscript.
Submitted 13.12.2022; approved after reviewing 21.12.2022; accepted for publication 24.12.2022

© Khushtova F. G., 2022

REFERENCES

1. H. Bateman, A. Erdeyi Higher Transcendental Functions. V. I. New York, Toronto, London, McGraw-Hill Book Company. 1953. 302 p.
2. A. P. Prudnikov, Yu. A. Brychkov, О. I. Marichev Intcgraly i ryady. Dopolnitel’nye glavy [Integrals and scries. Additional chapters]. V. 3. M.: Fizmatlit, 2003. 688 p.
3. A. A. Kilbas, M. Saigo H-Transform. Theory and Applications. London, New York and Washington: Chapman and Hall/CRC, Boca Raton, D.C., 2004. 389 p.
4. D. S. Kuznetsov Spetsial’nye funktsii [Special functions]. M.: Vysshaya shkola, 1965. 424 p.
5. N. N. Lebedev Spetsial’nye funktsii i ikh prilozheniya [Special functions and their applications]. M.: Fizmatlit, 1963. 358 p.
6. А. М. Nakhushev Drobnoe ischislenie i ego primenenie [Fractional calculus and its application], M.: Fizmatlit, 2003. 272 p.
7. A. V. Pskhu Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Fractional Partial Differential Equations], M.: Nauka, 2005. 199 p.
8. S. G. Samko, A. A. Kilbas, О. I. Marichev Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon, 1993. 1016 p.
9. S. M. Sitnik, S. M. Shishkina Mctod opcratorov preobrazovaniya dlya diffcrcntsial’nykh uravneniy s opcratorami Bcssclya [Method of transformation operators for differential equations with Bessel operators]. M.: Fizmatlit, 2019. 224 p.
10. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo Theory and Applications of Fractional Differential Equations. North Holland Mathematics Studies, 204. Amsterdam: Elsevier Science, Publishers BV, 2006. 499 p.
11. A. P. Prudnikov, Yu. A. Brychkov, О. I. Marichev Intcgraly i ryady. Element ar nyc funktsii [Integrals and scries. Elementary Functions]. V. 1. M.: Fizmatlit, 2002. 632 p.
12. A. M. Mathai, R. K. Saxena, H. J. Haubold The H-function. Theory and Applications. New York: Springer, 2010. 268 p.
13. F. G. Khushtova Formuly diffcrentsirovaniya i formula avtotransformatsii dlya odnogo chastnogo sluchaya funktsii Foksa [Differentiation formulas and an autotransformation formula for one particular case of the Fox function]. Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. 2020. V. 20, No. 4. P. 15-18.
14. F. G. Khushtova О nekotorykh svoystvakh odnoy spctsial’noy funktsii [On some properties of one special function]. Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy akademii nauk. 2022. V. 22, No. 2. P. 34-40.
15. О. I. Marichev Handbook of integral transforms of higher transcendental functions: theory and algorithmic tables, Ellis Horwood Ltd., Chichester, New York: Halstcd Press, 1983. 336 p.
16. M. M. Dzhrbashyan Integral’nyc preobrazovaniya i predstavlcniya funktsiy v kompleksnoy oblasti [Integral transformations and representations of functions in the complex domain], M.: Nauka. 1966. 671 p.
17. A. P. Prudnikov, Yu. A. Brychkov, О. I. Marichev Intcgraly i ryady. Spctsial’nye funktsii [Integrals and scries. Special Functions]. V. 2. M.: Fizmatlit, 2003. 664 p.

Лицензия Creative Commons
This work is licensed under a Creative Commons Attribution 4.0 License.

©​ | 2022 | Адыгская (Черкесская) Международная академия наук